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Figure 1: We introduce an automatic method to design non-circular gears, which are optimized not only to resemble the input shapes (left)
but also to transfer motion continuously and smoothly (middle). Further, our results can be 3D-printed and put to work in practice (right).

Abstract
We study a general form of gears known as non-circular gears that can transfer periodic motion with variable speed through
their irregular shapes and eccentric rotation centers. To design functional non-circular gears is nontrivial, since the gear pair
must have compatible shape to keep in contact during motion, so the driver gear can push the follower to rotate via a bounded
torque that the motor can exert. To address the challenge, we model the geometry, kinematics, and dynamics of non-circular
gears, formulate the design problem as a shape optimization, and identify necessary independent variables in the optimization
search. Taking a pair of 2D shapes as inputs, our method optimizes them into gears by locating the rotation center on each
shape, minimally modifying each shape to form the gear’s boundary, and constructing appropriate teeth for gear meshing. Our
optimized gears not only resemble the inputs but can also drive the motion with relatively small torque. We demonstrate our
method’s usability by generating a rich variety of non-circular gears from various inputs and 3D printing several of them.

CCS Concepts
• Computing methodologies → Shape modeling; • Fabrication → Computational design;

1. Introduction

Gears are basic building blocks in mechanical devices. The most
common form of gears is the circular gear, which transfers con-
stant speed and torque from one gear to another. In this paper, we
explore a general form of gears called non-circular gears [LFA04].
These gears have non-circular shapes and eccentric rotation cen-
ters, meaning that their boundaries are irregular and rotation cen-
ters are not necessarily at the gear centroid. In practice, non-circular
gears can transfer periodic motion with variable speed, and are used
in a variety of mechanical devices such as clockworks, astronomi-
cal devices, and musical instruments; see Figure 2 for examples.

Early works on non-circular gears focus on studying specific
forms such as elliptical gears [Bai02] and square gears [KB99],
analytically modeling their kinematic and dynamic behaviors, and
empirically investigating their mechanical properties. Recently,

† joint first authors

the design of non-circular gears has received a lot of interest
in the mechanical engineering community [LFAGPH09]. Some
of the designed gears have been put to work in various mech-
anisms [CTN∗13, ZHH∗16]. However, the dominant design ap-
proach for non-circular gears is analytical and relies on the specifi-
cation of a transmission function as the input. Hence, the approach
is limited to professional users and impractical for designing gears
of arbitrary shape; see Section 2 for details.

Motivated by the recent advancement of digital fabrication tech-
niques, we aim to develop computational methods that enable gen-
eral users to design functional non-circular gears with desired
shape. This is a nontrivial problem for three reasons. First, un-
like circular gears that can always couple together as long as their
teeth have same spacing, a pair of non-circular gears should have
compatible shape and gear profile to ensure almost unceasing con-
tacts during the rotation; see Figure 1(middle). Second, the required
instantaneous torque to drive non-circular gears is not constant
but varies with distance (i.e., arm of force) between the contact
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Figure 2: Non-circular gears designed by human experts: (a) ec-
centric gears sketched by Leonardo da Vinchi in “Codex Madrid
II” [Lac08]; (b) elliptical gears by “Magic Wheel” [Whe07]; (c)
wooden clocks with non-circular gears by Brian Law [Law13].

and each rotation center. Hence, improperly-designed non-circular
gears require extensive torque to drive, thereby reducing the mech-
anism’s efficiency. Third, non-circular gears require teeth with cus-
tomized shape to ensure proper gear meshing for transferring mo-
tion continuously without losing contact.

We approach the problem by first studying a pair of non-circular
gears, modeling their geometry, kinematics, and dynamics, and also
formulating necessary geometric and kinematic constraints to en-
sure a mating gear pair. Based on this foundation, we pose the prob-
lem of designing a pair of functional non-circular gears as a geo-
metric optimization, taking a pair of user-specified 2D shapes as
inputs. Our optimization has two goals: (i) the gears should resem-
ble the input shapes; and (ii) the maximum instantaneous torque re-
quired to drive the gears should be minimized, with the constraint
that the two gears should form a mating pair.

To solve the optimization, we minimally modify the input shapes
into a pair of mating gears, while minimizing the required torque
to drive them. Our idea is to construct a transmission function for
each input shape with a fixed rotation center, then match and in-
terpolate the transmission function derivatives to obtain the target
transmission function. By then, we can construct the gear boundary
shapes from the target transmission function, making the gears sim-
ilar to the input shapes, while avoiding tedious and explicit shape
deformations. To this end, we further devise a coarse-to-fine search
to find optimal rotation centers that satisfy our two design objec-
tives. Lastly, we create customized teeth on the resulting boundary
shapes for gear meshing. Our method enables the creation of a rich
variety of non-circular gears from various inputs. The results are
demonstrated via simulations and 3D printing, e.g., see Figure 1.

2. Related Works

Non-circular gears. The idea of non-circular gears can be traced
back to the 16th century, in a sketch by Leonardo da Vinci in
“Codex Madrid II”; see Figure 2(a). Later, a number of intriguing
mechanical properties of non-circular gears were discovered and
studied in experiments and practice, such as variable speed trans-
mission ratio [FLC00], force/moment balancing [AB10], and pre-
venting resonance oscillations [KNF∗17]. Non-circular gears have
also been used in a variety of mechanisms, including planetary gear
train [Mun06], geared linkage mechanism [MLB∗09, CTN∗13],
and indexing mechanism [ZHH∗16], for different applications.

Designing non-circular gears is nontrivial. Researchers in me-
chanical engineering typically use analytical methods to compute
their geometry from a given transmission function [LFAGPH09,

Bäs19]. However, specifying a transmission function requires deep,
relevant knowledge in mathematics and engineering, which is be-
yond the capability of general users. Very recently, Valle designed a
graphical software tool called Gearify [Val19], that can aid users to
design customized non-circular gears. This software takes as input
a user-provided gear profile, and automatically computes a mating
gear that can mesh with the input gear. However, there is no control
over the shape of the generated mating gear, making it difficult and
tedious to design a pair of gears with desired shapes. Enabled by
our computational method, our design tool takes two 2D shapes as
input, and resorts to a geometric optimization to automatically find
a pair of mating gears that resemble the input shapes.

Mechanism design. Computational design of personalized me-
chanical automata has excited great interest in the computer graph-
ics community. The key challenge in this line of works is to design
a mechanism that can effectively transfer an input motion (usually
from a single rotational motor) to realize the user-specified motions
or poses of the automata’s end-effectors, while simultaneously sat-
isfying the various fabrication, assembly, and aesthetic constraints.

To address the challenges, Zhang et al. [ZAC∗17] retargeted an
existing mechanism to a user-specified input shape, while Hergel
and Lefebvre [HL15] generated mechanisms from 2D designs
crafted by users. Rather than relying on existing mechanisms or
user sketches, a number of research works gain more flexibil-
ity in designing the mechanisms by automatically constructing
and connecting various classes of mechanical components, in-
cluding traditional mechanical elements (such as cams [ZXS∗12],
gears [CTN∗13, RCLM18], and linkages [TCG∗14, BCT15,
NBA19]), mechanical modules for oscillation [CLM∗13], ele-
mental mechanisms with higher pair joints [SWT∗17], and even
flexible mechanisms with compliant joints [MZB∗17] or kinetic
wires [XKCB18]. Among the above works, Coros et al. [CTN∗13]
incorporate non-circular gears for designing mechanical characters
that can display user-specified motions, in which the relation be-
tween the gears profile and transmission function is also modelled.
Compared with it, our work differs in two aspects. First, the de-
sign goals are different. We design non-circular gears to resemble
the user-specified shapes, while they aim at controlling the tim-
ing of the motions. Second, the ways to generate the transmission
function are different. We automatically generate the transmission
function based on an optimization, while they let users specify it.

Non-circular gears designed by our method complement the me-
chanical components explored in existing works by enabling tim-
ing and force controls while transferring motion. This result could
have great potential for use in the design of mechanisms that in-
volve adaptive speed and force.

2D shape-guided design. Our work is also related to techniques
that take 2D shapes as inputs to guide the design of an artwork, such
that the artwork’s contour resembles the given shape’s boundary.
Typical examples include calligram [ZCR∗16], collage [KSH∗16],
and ornamental packing [SKAM17]. Other works take a pair of 2D
shapes as input for designing dissection puzzles, including lattice-
based dissection [ZW12], approximate dissection [DYYT17], and
reversible hinged dissection [LMAH∗18]. Similar to our work, the
input shapes in [DYYT17, LMAH∗18] are allowed to be slightly
deformed to gain more flexibility when forming the designs.
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Figure 3: Geometric parameters of a non-circular gear pair.
As a convention, we color the driver (GD) and follower (GF ) in
light blue and dark blue, respectively, throughout the paper. The
local coordinate system of GD (GF ) is colored in light (dark)
orange, and the world coordinate system is colored in black.

Figure 4: A mating gear pair without teeth for better visualization. The con-
tact point (orange dot) is always on the line between the two rotation centers.

3. Parameterizing Non-Circular Gears

3.1. Modeling Individual Non-Circular Gears

A non-circular gear has three geometric components: (i) a closed
boundary curve; (ii) a rotation center; and (iii) teeth along the
boundary. Following [LFAGPH09], we represent the boundary
curve using a polar function r(θ), with rotation center at the origin
of the local coordinate and r denoting the distance from the origin
to curve at θ∈ [0,2π). In our implementation, we discretize r(θ) as
a set of polar coordinates {θi,ri}, where θ

i =
2π(i−1)

N , ri = r(θi),
and i ∈ {1...N}. In practice, we set N = 1024 in all experiments.

Also, given M as the number of teeth on a gear, we use standard
involute tooth profile [LFA04] to model the teeth using parameters
{h j} and {s j}: h j is the height of the j-th tooth (from tooth root
to tooth tip), s j is the spacing to next tooth (see inset in Figure 3),
j ∈ {1...M}, and j is uniformly sampled along boundary. The teeth
geometry is constructed by adjusting the sampled points along the
boundary curve to the locations computed based on {h j} and {s j}.

3.2. Modeling Pairs of Mating Non-Circular Gears

Next, we model the geometry, kinematics, and dynamics of a non-
circular gear pair, as well as the associated constraints.

Geometric modeling. In a pair of non-circular gears, the driver
gear (denoted as GD) initializes the motion and the follower gear
(denoted as GF ) reacts and rotates accordingly. Their polar function
and parameters are denoted as { rD(θD), {θi

D,r
i
D}, OD, {h j

D,s
j
D},

MD }, and { rF (θF ), {θi
F ,r

i
F}, OF , {hk

F ,s
k
F}, MF }, respectively,

where OD and OF represent the rotation centers of GD and GF ,
respectively, in the world coordinate system; see Figure 3.

The geometric parameters of the two gears are not independent.
First, the perimeter of GD should be K times the perimeter of GF ,
in which K is a rational number (ratio of two positive integers), to
enable gear meshing during periodic motion. Such perimeter ratio
is in fact the transmission ratio between GD and GF . Note that for
circular gears, K can be an arbitrary positive number as long as
the mating gears have the same tooth spacing. This paper considers
a specific class of non-circular gears, where K must be a positive
integer, or a reciprocal of a positive integer, to simplify our design
problem. Figure 5 showcases non-circular gear pairs with different
K. When K > 1, the bigger gear is K-fold rotational symmetric,

Figure 5: Example non-circular gear pairs with different transmis-
sion ratio K. Teeth are omitted for better boundary visualization.

since it needs repetitive boundary and teeth profiles for compatible
gear meshing. Lastly, we also have MF = K×MD.

Kinematic modeling. The pose of GF relative to GD is not arbi-
trary. We must place GF at a certain location relative to GD as its
initial pose. Without loss of generality, we define their initial poses
as the ones shown in Figure 4(a), i.e., the two gears contact at rD(0)
in GD’s coordinate system (with θD = 0) and rF (π) in GF ’s coor-
dinate system (with θF = π). Also, we denote L as the distance
between the two rotation centers, so L = rD(0)+ rF (π).

Further, we denote φD and φF as the rotation angles of GD
and GF , respectively, relative to initial poses, and set GD to ro-
tate counter-clockwise and GF to rotate clockwise; see Figure 4(b).
Then, we can define the transmission function for the gears:

ψ(φD) = φF , (1)

which maps φD to φF ; see again Figure 4(b). At the initial poses,
ψ(0) = 0. Also, ψ is monotonic and periodic, since GF keeps ro-
tating in the same direction and both φD and φF vary periodically.

Dynamic modeling. We assume a constant torque (magnitude de-
noted as τF ) that resists the follower gear to rotate, e.g., caused by
friction or load. Dynamic modeling aims to compute the required
instantaneous torque on the driver to move the gears. Such torque
varies with φD, so its magnitude is denoted as τD(φD). By the law of
action and reaction, the constant force
magnitude (denoted as F) acted on
GD and GF should be the same; see
the inset. So, by the formula of torque
calculation, τD(φD) = rD(2π−φD)F
and τF = rF (π− φF )F . Combining
the two equations, we have

F =
τD(φD)

rD(2π−φD)
=

τF

rF (π−φF )
. (2)

So, the instantaneous torque required on the driver at φD is

τD(φD) =
rD(2π−φD)

rF (π−φF )
τF . (3)
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Figure 6: Our approach to compute the mating gear. Given (a)
GD and K = 1, we first locate (b) GF ’s rotation center OF , then
compute (c) the transmission function and (d) GF ’s geometry.

Note that we ignore energy loss, e.g., due to friction, in our model.

Geometric and kinematic constraints. Below, we summarize
the constraints for ensuring smooth and continuous gear motion:

• First, since the distance between rotation centers of GD and GF
is fixed, for any φD, we should have

rD(2π−φD) + rF (π−φF ) = L , where φF = ψ(φD) . (4)

• Second, the tangential speed of the gears (rD
dφD
dt and rF

dφF
dt ) at

the contact point should equal, so we can remove dt and obtain

rD(2π−φD) dφD = rF (π−φF ) dφF . (5)

• In general, a full cycle (2π) of GD should correspond to 1/K
cycle of GF in the periodic rotation, so we have

ψ(2π) =
2π

K
. (6)

3.3. Computing Mating Gear Profiles

Next, we show that given a gear (with known geometry and rotation
center) and also a transmission ratio K, the geometry and rotation
center of its mating gear can be computed based on the above ge-
ometric and kinematic constraints; see Figure 6. Without loss of
generality, we take the input gear as GD.

(i) Locate the rotation center (L). By combining Equations 4
and 5, we can eliminate rF (π−φF ) and obtain

rD(2π−φD)

L− rD(2π−φD)
=

dφF

dφD
= ψ
′(φD) . (7)

Then, by replacing φD in Equation 7 with variable α ∈ [0,2π), and
integrating both sides from 0 to φD, we have

ψ(φD) =
∫ φD

0

rD(2π−α)

L− rD(2π−α)
dα . (8)

To satisfy the constraint in Equation 6, we set φD = 2π in Equa-
tion 8 and then substitute the result into Equation 6 to obtain∫ 2π

0

rD(2π−α)

L− rD(2π−α)
dα =

2π

K
. (9)

Now, Equation 9 contains only one unknown, i.e., L. Observing that
its left side always monotonically decreases with increase in L, we
thus solve for L by performing a binary search in range (rmax

D , (K+
1)rmax

D ], where rmax
D is the maximum rD for all θD. Then, we can

locate the rotation center of the follower; see Figure 6(b).

(ii) Compute transmission function. With L, we further compute
ψ(φD) by integrating Equation 8; see Figure 6(c) for an example.

Figure 7: The rotate-and-carve approach to generate GF from GD.

Figure 8: Mating gears (without teeth) computed using (a) rotate-
and-carve and (b) analytical approaches, which take 7.33 and 0.34
seconds, respectively. Note that the gear in (b) is not functional due
to part collision (see the red circle) during the rotation.

(iii) Compute mating gear geometry. We initialize follower gear
GF as a circle of radius L, since it must be contained within such
circle. Then, by rotating both GD and GF for a full cycle following
ψ(φD) and using GD’s boundary to progressively carve the circle,
we can obtain the shape of GF ; see Figure 7 for an example.

The above approach involves extensive constructive solid geom-
etry computation. We thus resort to an analytical approach to com-
pute GF , for efficient evaluation when exploring gear designs. By
Equation 4, the polar function of GF , i.e., rF , can be computed by

rF (π−φF ) = L− rD(2π−ψ
−1(φF )) , (10)

where ψ
−1(φF ) always exists because ψ(φD) is strictly monotonic.

This approach computes GF in O(N), where N is the number of
sample points on its boundary curve. It is worth to note that the re-
sulting gear may not be functional, due to potential collisions with
other parts in the driver. Figure 8 compares GF produced by the
two approaches. Note that we use the analytical approach for fast
generation and evaluation of GF when exploring the design space,
and use the rotate-and-carve approach to produce GF in the end.

4. Problem Formulation

We take two shapes, SD and SF , as well as transmission ratio K and
target number of teeth MD, as inputs. Our goal is to design a pair of
functional gears GD and GF that resemble SD and SF , respectively.
We formulate the design problem as an optimization that minimizes
the following objective:

E = Es + ω Eτ , (11)

where Es measures the amount of changes on SD and SF for form-
ing the gear pair; Eτ is the maximal instantaneous torque required
of GD to drive the gears; and ω is a weight empirically set as 0.2.
By using Equation 3, we can compute Eτ as maxφD τD(φD). We will
provide detail on how to compute Es later.

c© 2020 The Author(s)
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Figure 9: Overview of our approach: (a&b) smooth and normalize the input shapes; (c) recursively sample and evaluate rotation center
candidates; (d) choose the ones with minimal E; (e) construct the gear shapes; (f) generate teeth; and (g) fabricate the resulting gears.

Figure 10: (a) Input shapes with rotation center OD marked on SD.
Mating gears generated using our (b) first and (c) second attempts.

In general, the search space in the optimization consists of the
boundary curves and rotation centers of both GD and GF , as well
as the transmission function. However, since the parameters have
to satisfy the constraints presented in Section 3, several of them
are, in fact, dependent on one another. Hence, we need efficient
strategies to explore the search space. Also, since the teeth geome-
try does not affect the objective, we perform teeth generation as a
post-processing after solving the optimization; see Section 5.

Initial attempts. In our first attempt, we form the driver gear GD
by taking SD as its boundary curve and selecting a point in SD as
its rotation center OD, then compute GD’s mating gear GF using
the procedure in Section 3.3. This approach ensures GD to have
the same shape as SD, but yet, the shape of the follower GF may
deviate a lot from SF ; see Figure 10(b) for a typical result.

Our second attempt addresses the above limitation by deforming
both SD and SF , and measuring the shape change (i.e., Es) by using
a translational and rotational invariant shape descriptor [ARKF07].
However, there are no trivial methods (e.g., gradient-based) to
guide the deformations measured by the descriptors, while ensur-
ing that the generated gears form a mating pair. Hence, we resort to
use a simulated annealing search [CDY98]; see Figure 10(c) for a
typical result. However, the search easily gets stuck in local minima
and is too time-consuming, due to the huge search space.

Our strategy. From Equations 7 and 4, we observe that the ge-
ometry of a mating gear pair (without teeth) can be fully deter-
mined by the transmission function and distance between rotation
centers (i.e., L). Also, the rotation centers can locate at arbitrary
points within the input shapes. These observations inspire us to de-
velop an approach that first determines the rotation centers by us-
ing a sampling-based search and then computes the transmission
function by taking the given shapes and selected rotation centers
as inputs. Then, using the computed transmission function, we can
reconstruct the gear shapes, which can be guaranteed to be a mat-
ing pair. Different from the two initial attempts, the shape change

term Es is indirectly minimized when computing the transmission
function. Section 5 provides details about this approach.

5. Our Method

This section presents our method to solve the optimization problem
formulated in Section 4. Since the input shapes SD and SF usually
contain noise and sharp features, we first smooth them by using
cubic spline interpolation [DBDBM∗78]. Then, we normalize both
shapes in a unit square and scale-up SF , such that its perimeter is
K times the perimeter of SD; see Figure 9(a&b).

Figure 9 outlines our approach, which consists of three key steps.
First, we develop a coarse-to-fine search to find a pair of opti-
mal rotation centers that minimizes the objective in Equation 11
(see Figures 9(c&d)). Second, from the rotation centers and in-
put shapes, we determine the transmission function that minimizes
the shape change, and reconstruct the gear shapes from the trans-
mission function accordingly (see Figure 9(e)). Third, we initialize
teeth on gears and adjust the teeth height to avoid the gears from
losing contacts during their rotations (see Figure 9(f)). Lastly, we
fabricate the generated gears with teeth (see Figure 9(g)).

Note that to evaluate the quality of candidate rotation centers,
the coarse-to-fine search in the first step relies on our mechanism
formulated for the second step. Hence, we first present the second
step in Section 5.1, followed by the coarse-to-fine search (first step)
in Section 5.2 and teeth construction (third step) in Section 5.3.

5.1. Construct Mating Gears from Given Rotation Centers

In this section, we first consider the construction of mating gears
with transmission ratio K = 1, then extend the method for K > 1.

Given shapes SD and SF with the corresponding rotation centers
OD and OF , we first take SD and OD to form initial gear GD and
compute its transmission function following Equation 8, denoted
as ψD(φD). Similarly, we can obtain initial follower gear GF and
transmission function ψF (φF ); see Figure 11(b). If GD and GF are
perfectly paired already, ψD and ψF should be an exact inverse of
each other, i.e., ψD = ψ

−1
F , when we properly align them. Here, we

denote φshift as the shift angle on ψF to align GF with GD.

In general, it is likely that the initial gears GD and GF do not
perfectly pair; see Figure 11(c). Hence, to deform them and make
them a mating pair, we design the following procedure:

c© 2020 The Author(s)
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Figure 11: Our approach to compute mating gears from (a) input shapes. We first (b) locate a rotation center in each input shape, (c) compute
the derivatives of their transmission functions, (d) find the shift angle to align the two derivatives, (e&f) obtain the derivative of the target
transmission function by interpolating the two aligned derivatives, and lastly, (g) generate boundary curves (shapes) of the resulting gears.

Figure 12: Gears generated (a) without and (b)-(e) with the op-
tional step of bounding the maximum torque, in which the maximum
instantaneous torque of the driver does not exceed (b) 3.0 τF , (c)
2.0 τF , (d) 1.2 τF and (e) 1.0 τF . Here, we set K = 1.

(i) Align initial gears. To align the initial gears, we need to find a
proper orientation (i.e., φshift) to pose GF relative to GD. To obtain
φshift, we shift GF ’s transmission function (ψF ) for different angles,
and try to match it with GD’s transmission function (ψD). Since
derivative is independent of the starting point (i.e., the gears’ initial
orientation) and is more sensitive to changes, we thus compute the
transmission function derivatives ψ

′
D and ψ

−1′
F , and use them to

find the shift angle that minimizes their difference:

∆ =
∫ 2π

0
(ψ′D(φ) − ψ

−1′
F (φ+φshift))

2dφ . (12)

Here, we uniformly sample M candidate values of φshift in [0,2π],
and empirically set M = 128 in our experiments. Then, we use
Equation 12 to evaluate ∆ for each candidate, and choose the one
with the least ∆ (denoted as ∆min) as φshift; see Figure 11(d).

Interestingly, ∆min actually indicates the amount of deformation
(i.e., the change of r(θ) along the radial direction θ) needed on the
input shapes to make them a mating gear pair. Hence, we take it to
model the Es term in our objective (see Equation 11):

Es = ∆min . (13)

The underlying reason is that when the rotation centers are given,
L is known, and therefore, the gear shape (rD) and transmission
function derivative (ψ′) are actually one-to-one corresponding; see
Equation 7. This is also evidenced by the fact that when ∆min = 0,
the two transmission function derivatives (ψ′D and ψ

−1′
F ) perfectly

aligns with each other, and the two shapes are already a mating pair
without the need to deform them. By this one-to-one correspon-
dence, we thus minimize ∆min to minimize shape changes (Es).

(ii) Compute target transmission function. Next, we shift ψ
−1′
F

by φshift, and compute the derivative of the target transmission func-
tion ψ

′(φ) (see Figure 11(e&f)) by interpolating ψ
′
D and ψ

−1′
F :

ψ
′(φ) = tψ′D(φ)+(1− t)ψ−1′

F (φ+φshift) , (14)

Figure 13: Constructing mating gears for K = 2. We match (a)
ψ
′
D(φ) with 1/K of ψ

−1′
F (φ), (b&c) duplicate the resulting polar

function (in blue) of the follower gear K times, normalize it, and
then (d) compute the boundary curves of the gears.

where t ∈ [0,1] is a user-specified parameter and its default value
is set as 0.5 to balance the deformations on the two input shapes.
Note that ψ

′(φ) will later be used to reconstruct the shape of both
the driver and follower gears, so by the above interpolation, we
can make ψ

′(φ) to be similar to both ψ
′
D and ψ

−1′
F . Therefore, the

resulting gear shapes can better resemble the inputs with minimized
shape changes. Furthermore, we can use t to control how close the
resulting gears resemble each input shape.

(iii) Compute gear boundary curves. Using ψ
′(φ), OD, and OF ,

we can compute the boundary curves of GD and GF using Equa-
tion 7, and then Equation 4; see Figure 11(g) for a typical re-
sult. Comparing the result with those by the initial attempts (see
Figure 10(b&c)), this constructive approach produces gears with
smaller and more balanced modifications.

Optional step: bound the maximum torque. By combining
Equations 3, 4, and 7, we can derive

ψ
′(φD) = τD(φD)/τF , (15)

meaning that the instantaneous torque τD(φD) to drive the gears can
be measured by ψ

′(φD) as τF is a constant. Considering that motors
usually have a limit on the maximum output torque, we allow users
to set a threshold τthres to bound the driver’s torque τD(φD). Hence,
if τthres has been set, we truncate ψ

′(φD) from Equation 14 by

ψ
′
trunc(φD) =

{
τthres/τF if ψ

′(φD)> τthres/τF
ψ
′(φD) otherwise .

(16)

Further, we scale ψ
′
trunc(φD) to satisfy

∫ 2π

0 ψ
′
trunc(φD)dφD = 2π,

since transmission functions have to produce a full cycle on the
follower after the driver makes a full turn, for the case of K = 1.
Figure 12 shows gears generated using different τthres, in which the
gear shapes become more circular when τthres decreases.
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Extension: transmission ratio K 6= 1. We need three adapta-
tions to our approach to construct mating gears when K 6= 1. In
step (i), we match ψ

′
D(φ) in range [0,2π] with 1/K of ψ

−1′
F (φ) in

range [0,2π/K] to find φshift using Equation 12; see Figure 13(a). In
step (ii), we normalize the selected part of ψ

−1′
F (φ) from [0,2π/K]

to [0,2π]. After that, we use the original ψ
′
D(φ) and normalize

ψ
−1′
F (φ) to compute ψ

′(φ) according to Equation 14. In step (iii),
after obtaining the polar function of the follower based on ψ

′(φ),
we further duplicate the polar function K times and normalize it to
create the final polar function; see Figure 13 (b&c).

5.2. Coarse-to-fine Search for Optimal Rotation Centers

Given a pair of rotation centers, the above constructive approach
not just generates a pair of mating gears, but also provides a quan-
titative measure Es (or ∆min) on the amount of required changes to
the input shapes. Hence, the domains of the rotation center pair (OD
and OF ) can be regarded as the search space, since other parameters
can be computed from them. Therefore, we apply the constructive
approach to adaptively explore the search space by sampling can-
didate rotation center pairs and evaluating their quality using the
objective E to locate the rotation center pair that minimizes E.

To speed up the search, we sample rotation center pairs inside SD
and SF in a coarse-to-fine manner. In detail, for each input shape,
we first construct a 3× 3 grid within its bounding box, locate the
centers in the grid cells, and discard centers that are outside the
shape boundary; see the top-left illustration in Figure 9(c). Here, we
denote {Oi

D} as the list of remaining rotation center candidates in
shape SD, and likewise, {O j

F} for SF . Next, we try all possible pairs
of Oi

D and O j
F as candidate rotation center pairs to construct mating

gears (using the constructive approach in Section 5.1) but stop the
computation when we obtain the Es and objective function value
E. In this way, we can locate the best J rotation center pairs with
the smallest E. After that, we subdivide each cell associated with
the best rotation centers into a 3x3 grid, gather the new set of cell
centers within the shape as {Oi

D} and {O j
F}, then repeat the above

evaluation process. By recursively performing the above process
three times, we can obtain the rotation center pair that minimizes E
and take them as OD and OF ; see Figure 9(c) & (d) for a running
example. Note that we empirically set J = 3 in our implementation.

Once the optimal rotation centers OD and OF are found, we ap-
ply our constructive approach on them to compute the shapes of the
mating gears; see Figure 9(e).

5.3. Constructing Teeth on Mating Gears

To add teeth on the constructed gear shapes, we first locate MD
uniformly-spaced sample points on the driver shape’s boundary,
and use the standard involute tooth profile [LFA04] to initialize
{hi} and {si}, and construct teeth on the driver gear. Then, tak-
ing ρ as the tolerance between gears, we apply the rotate-and-carve
technique (see Figure 7) to generate teeth on the follower shape;
see Figure 14(a&b). However, we found that the resulting gears
can easily lose contacts after some rotation; see Figure 14(c). This
is because some of the teeth’s local moving direction is simply not
blocked by the corresponding teeth on the follower gear.

Figure 14: Constructing teeth on gears (a) without and (b) with
tolerance, showing that the tolerance is small. (c) Gears with reg-
ular teeth could lose contact during motion transfer. (d) We create
customized teeth with non-uniform shape for better gear meshing.

To resolve the problem, we individually scale the height (hi) of
each tooth, such that when it rotates, it can always push the corre-
sponding tooth on the follower and make it move. Mathematically,
for each tooth in the driver gear, we consider the moment at which
the root of the tooth just passes through the center line between
OD and OF (see the inset in Figure 14(b)). Then, we formulate the
following inequality that describes the situation that the tooth can
contact and push the corresponding tooth:

hi cosα≥ si

2
sinα+ρ cosα . (17)

Hence, we set hi as si
2 tanα+ ρ for constructing the tooth on the

driver. In the end, we generate a 3D mesh models for each gear
by triangulating the 2D gear profile and thickening it, and then,
fabricate the gear models using 3D printing; see Figure 9(g).

6. Results and Experiments

We implement our method in Python 3.7 and run it on a lap-
top with a dual-core Intel i5 CPU and 16GB RAM. We use
NumPy [Oli19] to manipulate the arrays and their computation,
and use Shapely [G∗19] for the basic geometric computing, such
as CSG operations and triangulation. To generate the input 2D
shapes, we compile a collection of shapes, including 28 silhouette
images and 84 images selected from two public silhouette image
datasets, i.e., MPEG-7 database [LLE00] and the Animal database
from [BLT09]. Then, we manually select 300 pairs of shapes from
the collection as inputs to our method. Here, we consider three se-
lection criteria: (i) the shapes in each gear pair should have relevant
semantic meaning; (ii) shapes with delicate structures, e.g., long
and thin tails, are not selected; and (iii) we avoid overly using the
same shape. For each pair of input shapes, we try our method with
three different values of transmission ratio K, i.e., K = 1, 2, and 3.
We sort all the results in ascending order of the resulting objective
function value E, and report the top ones in the paper.

Generated gears of different variety. Figure 15 shows 14 pairs
of non-circular gears of various shapes generated by our method;
see also the supplementary video for animated results. When the
two input shapes are the same, the generated gear pair will have the
same boundary curve, if we set t = 0.5 in Equation 14 for gener-
ating the resulting gear shapes; see the top two rows in Figure 15.
Also, our method allows users to express preference on which of
the two input shapes to be better preserved in the resulting gears

c© 2020 The Author(s)
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Figure 15: A gallery of non-circular gears computed by our method. From top to bottom: left column: SQUARE-SQUARE, STARFISH-
STARFISH, DROP-HEART, POT-SHOE, FISH-BUTTERFLY, DOG-BONE, TRUMP-CLUB; right column: ELLIPSE-ELLIPSE, TRIANGLE_BELL-
SUNNY_DOLL, LEAF-FLOWER, DOVE-DOVE, HAT-GIRL, BUTTERFLY-FIGHTER. For each generated gear pair, we show the input shapes on
the left, and three snapshots of rotating gears on the right. We overlay the input shape to gears in the first snapshot to show the deformation.

Figure 16: (a) Given the BELL-CANDY input, three sets of results
are generated for different transmission ratios: (b) K = 1, (c) K = 2
and (d) K = 3. The corresponding objective function value is (b)
E = 0.30, (c) E = 0.24, and (d) E = 0.43.

by simply adjusting the value of t; see two typical examples in Fig-
ure 17. Note further that preserving more of one input shape will
deteriorate the shape of the other, and vice-versa.

In our experiments, we found that many desirable results are gen-
erated for K = 1 but not for K > 1; see again Figure 15. This is
because K > 1 requires an input shape of K-fold rotational symme-
try. This is not common in practice; see the LEAF-FLOWER result
with K = 3 in Figure 15 (5th row, right column) for an example.
Figure 16 shows three pairs of BELL-CANDY gears generated for
the same input shapes but using different transmission ratios (i.e.,

K = 1,2,3) as well as the corresponding objective function value E,
and we can see that significant shape change happens for K = 1,3.

Statistics. Table 1 shows the statistics of our results. Overall, our
method can generate a gear pair in around 9.7 minutes on average,
which can be significantly sped up with a C/C++ implementation
in the future. As expected, the rotation center search and the rotate-
and-carve procedure take up most of the processing time, which
are 9.5 and 0.15 minutes on average, respectively. Also, we ob-
serve that input shapes of larger area (e.g., SQUARE-SQUARE) usu-
ally need more time to process, since there are more rotation center
candidates to be evaluated inside the input shapes.

Fabrication. We use an FDM 3D printer (Ultimaker 2 Extended
plus) with printing resolution 0.1mm and an SLA printer (Form 2)
with printing resolution 0.05mm to print our designed gears. To ac-
commodate the manufacturing inaccuracy, we shrink the boundary
of each gear (driver and follower) by 0.1mm, so the overall toler-
ance is 0.2mm. We assemble a LEGO Technic test bed to examine
the usability of the generated gears. To do so, we first scale the gear
pairs, such that the distance between their rotation centers equals to
N× 7.76mm, where N is a positive integer and 7.76mm is the size
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Figure 17: Preference on preserving one particular input shape can be expressed by adjusting the value of t in Equation 14. Note that the
rotation centers of the gears are fixed in these optimizations (see the dots in the input shapes). Top: FISH-BUTTERFLY; bottom: DOG-BONE.

Table 1: Statistics of our results. From left to right, the name of in-
put shape, transmission ratio K, number of teeth MD on the driver
gear, number of vertices V (GF ) of the follower gear model (note
that the number of vertices of the driver gear is 1024 for all the
results), pre-processing time, time to find the optimal rotation cen-
ters, time to generate the follower gear using the rotate-and-carve
technique, and total time to generate the gears.

Model

Input & Output Running time (minutes)

𝐾 𝑀𝐷 V(𝐺𝐹)
Pre-

process

Rotation
center
search

Rotate-
and-
carve

Total

1 32 1535 0.015 12.83 0.08 12.92

1 32 1107 0.005 7.65 0.06 7.71

1 64 3388 0.006 8.77 0.16 8.93

1 64 4275 0.013 8.55 0.21 8.77

1 32 2933 0.013 10.12 0.12 10.25

1 48 4475 0.010 8.65 0.21 8.87

1 32 1122 0.013 10.30 0.07 10.38

2 32 5033 0.008 8.31 0.24 8.55

3 32 8608 0.008 10.37 0.14 10.51

1 64 3776 0.010 8.28 0.20 8.49

1 48 2462 0.018 12.07 0.12 12.21

1 64 4912 0.008 8.17 0.22 8.39

1 64 2884 0.010 9.22 0.14 9.37

1 48 1898 0.010 5.81 0.11 5.93

1 64 3904 0.015 9.58 0.21 9.80

1 64 2907 0.013 10.36 0.13 10.50

1 64 3570 0.017 12.50 0.18 12.70

of a grid cell in our test bed. Second, we create a cross-shaped hole
at the rotation center of the 3D-printed gears, so that we can as-
semble it with the LEGO R© Technic axle beam. Using this testbed,
we can put together our 3D-printed gears, and evaluate the gears
usability by connecting the axle of the driver gear to the LEGO R©

motor. Figure 18 (top) shows six pairs of gears that are in motion.

Besides, we also build a train of twelve gears, which consists of
six pairs of gears with exactly the same shapes that are connecting
alternatively; see Figure 18 (bottom). Please watch the supplemen-
tary video for the animated results.

Experiment on torque. Our method not only minimizes the
torque (i.e., Eτ) required to drive the gears, but also allows users
to bound the driver’s torque by setting the threshold τthres. We con-
ducted two experiments to evaluate these two features, respectively.
In the first experiment, we generate two pairs of HEART-HEART

gears with different ω in our objective function (see Equation 11),
i.e., ω = 0.2 and ω = 1.0, respectively. Figure 19 (b&c) shows the

Figure 18: Our 3D-printed non-circular gears. Top: SQUARE-
SQUARE, BELL-CANDY & ELLIPSE-ELLIPSE; middle: FISH-
BUTTERFLY, HEART-HEART & TRIANGLE_BELL-SUNNY_DOLL;
and bottom: a gear train composed of six pairs of DROP-HEART.

two generated gear pairs. We can see from the figure that the ro-
tation centers of the gear pair with ω = 1.0 (Figure 19 (c)) locates
more close to the shape center, but the gear boundary is more de-
formed from the inputs. This is because a larger ω emphasizes more
on minimizing the maximum torque in the gear rotation. This is
equivalent to putting the rotation center at the shape centroid. In
the second experiment, we generate two pairs of BOY-GIRL gears
with and without having τthres = 2τF ; see Figure 19 (e&f).

To experimentally compare the generated gears, we create a sim-
ple system to measure the maximum torque required to drive the
3D-printed gears. First, we use a LEGO Technic pin with the fric-
tion ridges (constant friction torque of 0.01195 Nm) to block the
follower gear to rotate, which is employed to simulate a load acted
on the follower gear; see the blue axle shown in Figure 19. Next, we
use a force gauge to measure the force with a 23.9mm arm of force,
which has a maximum range of 50N and an accuracy of 0.25N, and
is able to record the maximum force it measured. After the prepa-
ration work, we divide a full rotation cycle of the driver into 16
samples, measure the required driving force for each sample, and
record the maximum force. Figure 19 shows the maximum driv-
ing force and the corresponding gear poses, thereby verifying the
effectiveness of our method to reduce the required driving torque.
Please watch the supplementary video for more detail.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Hao Xu et al. / Computational Design and Optimization of Non-Circular Gears

Figure 19: Experiments on maximum instantaneous torque re-
quired to drive the gears. From the same input shapes (a&d),
HEART-HEART gears generated with (b) ω = 0.2 and (c) ω = 1.0;
and BOY-GIRL results generated (e) without and (f) with torque
bounding. The torque is measured by a force gauge with a fixed
arm of force (see the numbers in the yellow dial plate).

Experiment on teeth. To test the effectiveness of our customized
teeth, we generate two pairs of gears with the same boundary curve
but different teeth, i.e., regular and customized teeth, where the cus-
tomized teeth are generated using the approach presented in Sec-
tion 5.3. For each gear pair, we rotate the driver gear and observe
the reaction of the follower gear. In our experiments, the gears with
regular teeth could lose contact at a certain moment; see Figure 20
(left). In contrast, the gears with customized teeth can transfer mo-
tion continuously without such issue; see Figure 20 (right). Please
watch the supplementary video for animated results.

7. Conclusion

We present a new method to compute and generate non-circular
gears that are functional and resemble the given 2D shapes. The
foundation of our method is a discrete geometric characterization of
the non-circular gear, as well as the kinematic and dynamic model-
ing built on top of it. Inspired by the close relationship between gear
geometry and kinematics, we formulate a constructive approach
that takes the transmission functions of the input shapes as an in-
termediary, and then minimally modifies the two input shapes to
form a mating gear pair with fixed rotation centers. One key inno-
vation is to work with the derivative of the transmission functions
to solve for a pair of optimal rotation centers, then to take these
rotation centers to directly reconstruct the gear shapes. In this way,
we can avoid explicit and tedious 2D shape deformations, yet being
able to modify the input shapes with minimized shape changes. Our
method can produce non-circular gears of a rich variety of shapes
that were not possible before. Also, these gears require only a rela-
tively small torque to drive, as verified in our physical experiments.

Potential applications. The non-circular gears generated from
our framework seek visually-appealing results on top of a function-
ality guarantee, enabling us to apply them in various usage scenar-
ios. For example, we can employ them as components in decorative
artworks and mechanical devices, combining form and function in
an aesthetically-pleasing manner. Besides, we can use non-circular

Figure 20: Gears generated with regular and customized teeth.
Left: gears with regular teeth could lose contact during motion
transfer (see the zooming views). Right: gears with customized
teeth could maintain unceasing contact.

Figure 21: Two typical failure cases. Left: not all 2D shapes can
be represented by a polar function (range [0,2π)); see the red and
green dots. Right: our method cannot preserve very fine geometric
features on the input shapes, as such details cannot be well encoded
in the transmission functions for generating the gears.

gears of shape optimized for assorted functionality requirements,
e.g., avoiding potential collision with the enclosure and with the
other parts in a mechanical or robotic system.

Discussion. Our work has some limitations that could inspire in-
teresting directions for future research. First, our method may not
work well for arbitrary inputs, meaning that the generated gears
cannot be faithful to the inputs. Figure 21 shows two typical cases,
where the input shapes cannot be represented by polar functions
(left), and they contain characteristic features that are lost during
the gear generation (right). Second, our current implementation
considers only shape similarity and maximum torque. It would be
helpful to include other measures, such as aesthetics (e.g., maintain
shape features), structural strength, kinematic and dynamic perfor-
mance, etc. Third, the decomposition of gear geometry into bound-
ary curve and teeth profile could result in non-fabricable geometry;
e.g., teeth added on thin gear parts could create a gear with dis-
connected geometry. Last, we focus on designing 2D non-circular
gear pairs. Further work to explore the construction of non-circular
gears with other kinds of mechanical elements (e.g., linkages), as
well as non-circular gears in 3D space, to form mechanisms for
performing more complex tasks would be interesting.
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